Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 27(2): 655-658, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496648

RESUMO

We report an analysis of the genomic diversity of isolates of Burkholderia pseudomallei, the cause of melioidosis, recovered in Colombia from routine surveillance during 2016-2017. B. pseudomallei appears genetically diverse, suggesting it is well established and has spread across the region.


Assuntos
Burkholderia pseudomallei , Melioidose , Burkholderia pseudomallei/genética , Colômbia/epidemiologia , Genômica , Humanos , Melioidose/epidemiologia , Tipagem de Sequências Multilocus
2.
PLoS Negl Trop Dis ; 13(7): e0007578, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306423

RESUMO

BACKGROUND: Glanders caused by Burkholderia mallei is a re-emerging zoonotic disease affecting solipeds and humans. Furthermore, B. mallei is genetically related to B. pseudomallei, which is the causative agent of melioidosis. Both facultative intracellular bacteria are classified as tier 1 select biothreat agents. Our previous study with a B. mallei ΔtonB Δhcp1 (CLH001) live-attenuated vaccine demonstrated that it is attenuated, safe and protective against B. mallei wild-type strains in the susceptible BALB/c mouse model. METHODOLOGY/PRINCIPAL FINDING: In our current work, we evaluated the protective efficacy of CLH001 against glanders and melioidosis in the more disease-resistant C57BL/6 mouse strain. The humoral as well as cellular immune responses were also examined. We found that CLH001-immunized mice showed 100% survival against intranasal and aerosol challenge with B. mallei ATCC 23344. Moreover, this vaccine also afforded significant cross-protection against B. pseudomallei K96243, with low level bacterial burden detected in organs. Immunization with a prime and boost regimen of CLH001 induced significantly greater levels of total and subclasses of IgG, and generated antigen-specific splenocyte production of IFN-γ and IL-17A. Interestingly, protection induced by CLH001 is primarily dependent on humoral immunity, while CD4+ and CD8+ T cells played a less critical protective role. CONCLUSIONS/SIGNIFICANCE: Our data indicate that CLH001 serves as an effective live attenuated vaccine to prevent glanders and melioidosis. The quantity and quality of antibody responses as well as improving cell-mediated immune responses following vaccination need to be further investigated prior to advancement to preclinical studies.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Burkholderia mallei/imunologia , Mormo/imunologia , Imunização , Melioidose/imunologia , Proteínas de Membrana/imunologia , Vacinas Atenuadas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Burkholderia mallei/genética , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Mormo/microbiologia , Mormo/prevenção & controle , Humanos , Imunidade Humoral , Melioidose/microbiologia , Melioidose/prevenção & controle , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinação , Fatores de Virulência/genética , Fatores de Virulência/imunologia
3.
mSphere ; 4(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602524

RESUMO

Burkholderia pseudomallei is a Gram-negative facultative intracellular bacterium and the causative agent of melioidosis, a severe infectious disease found throughout the tropics. This organism is closely related to Burkholderia mallei, the etiological agent of glanders disease which primarily affects equines. These two pathogenic bacteria are classified as Tier 1 select agents due to their amenability to aerosolization, limited treatment options, and lack of an effective vaccine. We have previously successfully demonstrated the immunogenicity and protective efficacy of a live attenuated vaccine strain, B. malleiΔtonB Δhcp1 (CLH001). Thus, we applied this successful approach to the development of a similar vaccine against melioidosis by constructing the B. pseudomalleiΔtonB Δhcp1 (PBK001) strain. C57BL/6 mice were vaccinated intranasally with the live attenuated PBK001 strain and then challenged with wild-type B. pseudomallei K96243 by the aerosol route. Immunization with strain PBK001 resulted in full protection (100% survival) against acute aerosolized melioidosis with very low bacterial burden as observed in the lungs, livers, and spleens of immunized mice. PBK001 vaccination induced strong production of B. pseudomallei-specific serum IgG antibodies and both Th1 and Th17 CD4+ T cell responses. Further, humoral immunity appeared to be essential for vaccine-induced protection, whereas CD4+ and CD8+ T cells played a less direct immune role. Overall, PBK001 was shown to be an effective attenuated vaccine strain that activates a robust immune response and offers full protection against aerosol infection with B. pseudomalleiIMPORTANCE In recent years, an increasing number of melioidosis cases have been reported in several regions where melioidosis is endemic and in areas where melioidosis had not commonly been diagnosed. Currently, the estimated burden of disease is around 165,000 new cases annually, including 89,000 cases that have fatal outcomes. This life-threatening infectious disease is caused by B. pseudomallei, which is classified as a Tier 1 select agent. Due to the high case fatality rate, intrinsic resistance to multiple antibiotic treatments, susceptibility to infection via the aerosol route, and potential use as a bioweapon, we have developed an effective live attenuated PBK001 vaccine capable of protecting against aerosolized melioidosis.


Assuntos
Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Burkholderia pseudomallei/classificação , Modelos Animais de Doenças , Feminino , Melioidose/imunologia , Camundongos Endogâmicos C57BL , Vacinas Atenuadas/imunologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30013953

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis, a disease that requires long-term treatment regimens with no assurance of bacterial clearance. Clinical isolates are intrinsically resistant to most antibiotics and in recent years, isolates have been collected that display resistance to frontline drugs. With the expanding global burden of B. pseudomallei, there is a need to identify new compounds or improve current treatments to reduce risk of relapse. Using the Pathogen Box generated by Medicines for Malaria Venture, we screened a library of 400 compounds for bacteriostatic or bactericidal activity against B. pseudomallei K96243 and identified seven compounds that exhibited inhibitory effects. New compounds found to have function against B. pseudomallei were auranofin, rifampicin, miltefosine, MMV688179, and MMV688271. An additional two compounds currently used to treat melioidosis, doxycycline and levofloxacin, were also identified in the screen. We determined that the minimal inhibitory concentrations (MIC) for levofloxacin, doxycycline, and MMV688271 were below 12 µg/ml for 5 strains of B. pseudomallei. To assess persister frequency, bacteria were exposed to 100x MIC of each compound. Auranofin, MMV688179, and MMV688271 reduced the bacterial population to an average of 4.53 × 10-6% compared to ceftazidime, which corresponds to 25.1% survival. Overall, our data demonstrates that auranofin, MMV688197, and MMV688271 have the potential to become repurposed drugs for treating melioidosis infections and the first evidence that alternative therapeutics can reduce B. pseudomallei persistence.


Assuntos
Antibacterianos/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Melioidose/microbiologia , Reposicionamento de Medicamentos , Testes de Sensibilidade Microbiana
5.
Vaccines (Basel) ; 5(4)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28956836

RESUMO

Burkholderia cenocepacia is an opportunistic pathogen prevalent in cystic fibrosis patients, which is particularly difficult to treat, causing chronic and eventually fatal infections. The lack of effective treatment options makes evident the need to develop alternative therapeutic or prophylactic approaches. Vaccines, and live attenuated vaccines, are an unexplored avenue to treat B. cenocepacia infections. Here we constructed and characterized a B. cenocepacia tonB mutant strain, which was unable to actively transport iron, to test whether this single gene deletion mutant (strain renamed GAP001) protected against an acute respiratory B. cenocepacia lethal infection. Here we show that the mutant strain GAP001 is attenuated, and effective at protecting against B. cenocepacia challenge. Intranasal administration of GAP001 to BALB/c mice resulted in almost complete survival with high degree of bacterial clearance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...